Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Clin Obstet Gynecol ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38251758

RESUMO

The career path of everyone is quite unique based on the goals and the choices we make, and success can take time to unfold. My career choices have been greatly influenced by remarkable mentors and opportunities. Reciprocally I have had the pleasure, as a faculty member, department chair, and medical school dean to mentor promising young physicians and scientists to launch successful careers. We need to continue to attract physicians and scientists to academic medicine to ensure that our field continues to innovate and improve the lives of our patients. To influence positive change, we must stay relentlessly focused and have faith that success will come.

2.
Am J Obstet Gynecol ; 230(2): 254.e1-254.e13, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37531989

RESUMO

BACKGROUND: Hyperglycemia from pregestational diabetes mellitus induces neural tube defects in the developing fetus. Folate supplementation is the only effective way to prevent neural tube defects; however, some cases of neural tube defects are resistant to folate. Excess folate has been linked to higher maternal cancer risk and infant allergy. Therefore, additional interventions are needed. Understanding the mechanisms underlying maternal diabetes mellitus-induced neural tube defects can identify potential targets for preventing such defects. Despite not yet being in clinical use, growing evidence suggests that microRNAs are important intermediates in embryonic development and can serve as both biomarkers and drug targets for disease intervention. Our previous studies showed that maternal diabetes mellitus in vivo activates the inositol-requiring transmembrane kinase/endoribonuclease 1α (IRE1α) in the developing embryo and that a high glucose condition in vitro reduces microRNA-322 (miR-322) levels. IRE1α is an RNA endonuclease; however, it is unknown whether IRE1α targets and degrades miR-322 specifically or whether miR-322 degradation leads to neural tube defects via apoptosis. We hypothesize that IRE1α can inhibit miR-322 in maternal diabetes mellitus-induced neural tube defects and that restoring miR-322 expression in developing neuroepithelium ameliorates neural tube defects. OBJECTIVE: This study aimed to identify potential targets for preventing maternal diabetes mellitus-induced neural tube defects and to investigate the roles and relationship of a microRNA and an RNA endonuclease in mouse embryos exposed to maternal diabetes mellitus. STUDY DESIGN: To determine whether miR-322 reduction is necessary for neural tube defect formation in pregnancies complicated by diabetes mellitus, male mice carrying a transgene expressing miR-322 were mated with nondiabetic or diabetic wide-type female mice to generate embryos with or without miR-322 overexpression. At embryonic day 8.5 when the neural tube is not yet closed, embryos were harvested for the assessment of 3 miR-322 transcripts (primary, precursor, and mature miR-322), tumor necrosis factor receptor-associated factor 3 (TRAF3), and neuroepithelium cell survival. Neural tube defect incidences were determined in embryonic day 10.5 embryos when the neural tube should be closed if there is no neural tube defect formation. To identify which miR-322 transcript is affected by maternal diabetes mellitus and high glucose conditions, 3 miR-322 transcripts were assessed in embryos from dams with or without diabetes mellitus and in C17.2 mouse neural stem cells treated with different concentrations of glucose and at different time points. To determine whether the endonuclease IRE1α targets miR-322, small interfering RNA knockdown of IRE1α or overexpression of inositol-requiring transmembrane kinase/endoribonuclease 1α by DNA plasmid transfection was used to determine the effect of IRE1α deficiency or overexpression on miR-322 expression. RNA immunoprecipitation was performed to reveal the direct targets of inositol-requiring transmembrane kinase/endoribonuclease 1α. RESULTS: Maternal diabetes mellitus suppressed miR-322 expression in the developing neuroepithelium. Restoring miR-322 expression in the neuroepithelium blocked maternal diabetes mellitus-induced caspase-3 and caspase-8 cleavage and cell apoptosis, leading to a neural tube defect reduction. Reversal of maternal diabetes mellitus-inhibited miR-322 via transgenic overexpression prevented TRAF3 up-regulation in embryos exposed to maternal diabetes mellitus. Activated IRE1α acted as an endonuclease and degraded precursor miR-322, resulting in mature miR-322 reduction. CONCLUSION: This study supports the crucial role of the IRE1α-microRNA-TRAF3 circuit in the induction of neuroepithelial cell apoptosis and neural tube defect formation in pregnancies complicated by diabetes mellitus and identifies IRE1α and miR-322 as potential targets for preventing maternal diabetes mellitus-induced neural tube defects.


Assuntos
Diabetes Mellitus Experimental , Diabetes Gestacional , MicroRNAs , Defeitos do Tubo Neural , Gravidez em Diabéticas , Humanos , Gravidez , Masculino , Feminino , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 3 Associado a Receptor de TNF/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Gravidez em Diabéticas/genética , Gravidez em Diabéticas/metabolismo , Diabetes Gestacional/genética , Glucose , Ácido Fólico , Inositol
3.
Gynecol Obstet Invest ; 87(2): 165-172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35526532

RESUMO

INTRODUCTION: Studies indicate a very low rate of SARS-CoV-2 detection in the placenta or occasionally a low rate of vertical transmission in COVID-19 pregnancy. SARS-CoV-2 Delta variant has become a dominant strain over the world and possesses higher infectivity due to mutations in its spike receptor-binding motif. CASE PRESENTATION: To determine whether SARS-CoV-2 Delta variant has increased potential for placenta infection and vertical transmission, we analyzed SARS-CoV-2 infection in the placenta, umbilical cord, and fetal membrane from a case where an unvaccinated mother and her neonate were COVID-19 positive. A 35-year-old primigravida with COVID-19 underwent an emergent cesarean delivery due to placental abruption in the setting of premature rupture of membranes. The neonate tested positive for SARS-CoV-2 within the first 24 h, and then again on days of life 2, 6, 13, and 21. The placenta exhibited intervillositis, increased fibrin deposition, and syncytiotrophoblast necrosis. Sequencing of viral RNA from fixed placental tissue revealed SAR-CoV-2 B.1.167.2 (Delta) variant. Both spike protein and viral RNA were abundantly present in syncytiotrophoblasts, cytotrophoblasts, umbilical cord vascular endothelium, and fetal membranes. CONCLUSION: We report with strong probability the first SARS-CoV-2 Delta variant transplacental transmission. Placental cells exhibited extensive apoptosis, senescence, and ferroptosis after SARS-CoV-2 Delta infection.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Adulto , COVID-19/diagnóstico , Feminino , Humanos , Recém-Nascido , Placenta/irrigação sanguínea , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico , RNA Viral , SARS-CoV-2
4.
bioRxiv ; 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-35132414

RESUMO

The neurotropism of SARS-CoV-2 and the phenotypes of infected neurons are still in debate. Long COVID manifests with "brain diseases" and the cause of these brain dysfunction is mysterious. Here, we analyze 34 age- and underlying disease-matched COVID-19 or non-COVID-19 human brains. SARS-CoV-2 RNA, nucleocapsid, and spike proteins are present in neurons of the cognitive centers of all COVID-19 patients, with its non-structural protein NSF2 detected in adult cases but not in the infant case, indicating viral replications in mature neurons. In adult COVID-19 patients without underlying neurodegeneration, SARS-CoV-2 infection triggers Aß and p-tau deposition, degenerating neurons, microglia activation, and increased cytokine, in some cases with Aß plaques and p-tau pretangles. The number of SARS-CoV-2 + cells is higher in patients with neurodegenerative diseases than in those without such conditions. SARS-CoV-2 further activates microglia and induces Aß and p-tau deposits in non-Alzheimer's neurodegenerative disease patients. SARS-CoV-2 infects mature neurons derived from inducible pluripotent stem cells from healthy and Alzheimer's disease (AD) individuals through its receptor ACE2 and facilitator neuropilin-1. SARS-CoV-2 triggers AD-like gene programs in healthy neurons and exacerbates AD neuropathology. An AD infectious etiology gene signature is identified through SARS-CoV-2 infection and silencing the top three downregulated genes in human primary neurons recapitulates the neurodegenerative phenotypes of SARS-CoV-2. Thus, our data suggest that SARS-CoV-2 invades the brain and activates an AD-like program.

5.
Reprod Toxicol ; 107: 90-96, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890771

RESUMO

Maternal obesity is associated with increased risk of adverse pregnancy and birth outcomes. While increasing body of evidence supports that the etiology is related to fetal and placental hypoxia, molecular signaling changes in response to this pathophysiological condition in human placenta have remained elusive. Here by using varied approaches including immunocytochemistry staining, Western blot, RT-qPCR, and ELISA, we aimed to investigate the changes in epigenetic markers in placentas from obese pregnant women following delivery by Caesarean-section at term. Our results revealed that the levels of 5-methylcytosine (5mC), a methylated form commonly occurring in CpG dinucleotides and an important repressor of gene transcription in the genome, were significantly increased coupled with decreased activity of Ten-Eleven Translocation (TETs) enzymes that principally function by oxidizing 5mC in the obese placenta, consistent with hypoxia-induced genome-wide DNA hypermethylation observed in varied types of cells and tissues. N6-methyladenosine (m6A) represents the most abundant and conserved modification of gene transcripts, especially within mRNAs, which is stalled by m6A methyltransferases or "writers" including METTL-3/-14, WTAP, RBM15B, and KIAA1429. We further showed that obese placentas demonstrated significantly down-regulated levels of m6A along with reduced gene expression of WTAP, RBM15B, and KIAA1429. Our data support that maternal obesity-induced hypoxia may play an important role in triggering genome-wide DNA hypermethylation in the human placenta, and in turn leading to transcriptome-wide inhibition of RNA modifications. Our results further suggest that selectively modulating these pathways may facilitate development of novel therapeutic approaches for controlling and managing maternal obesity-associated adverse clinical outcomes.


Assuntos
Metilação de DNA , Obesidade Materna/genética , Placenta/metabolismo , RNA/metabolismo , 5-Metilcitosina/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Feminino , Humanos , Metiltransferases/genética , Obesidade Materna/metabolismo , Gravidez
6.
Sci Adv ; 7(27)2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34193422

RESUMO

Neural tube defects (NTDs) are the second most common structural birth defect. Senescence, a state of permanent cell cycle arrest, occurs only after neural tube closure. Maternal diabetes-induced NTDs are severe diabetic complications that lead to infant mortality or lifelong morbidity and may be linked to premature senescence. Here, we report that premature senescence occurs in the mouse neuroepithelium and disrupts neurulation, leading to NTDs in diabetic pregnancy. Premature senescence and NTDs were abolished by knockout of the transcription factor Foxo3a, the miR-200c gene, and the cell cycle inhibitors p21 and p27; transgenic expression of the dominant-negative FoxO3a mutant; or the senomorphic rapamycin. Double transgenic expression of p21 and p27 mimicked maternal diabetes in inducing premature neuroepithelium senescence and NTDs. These findings integrate transcription- and epigenome-regulated miRNAs and cell cycle regulators in premature neuroepithelium senescence and provide a mechanistic basis for targeting premature senescence and NTDs using senomorphics.

7.
Sens Actuators B Chem ; 3312021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33551571

RESUMO

The ability to measure all the electrolyte concentrations in tears would be valuable in ophthalmology for research and diagnosis of dry eye disease (DED) and other ocular pathologies. However, tear samples are difficult to collect and analyze because the total volume is small and the chemical composition changes rapidly. Measurements of electrolytes in tears is challenging because typical clinical assays for proteins and other biomarkers cannot be used to detect ion concentrations tears. Here, we report the contact lens which is sensitive to sodium ion (Na+), one of the dominant electrolytes in tears. The Na ions in tears is diagnostic for DED. Three sodium-sensitive fluorophores (SG-C16, SG-LPE and SG-PL) were synthesized by derivatizing the sodium green with 1-hexadecyl amine, 1-oleoyl-2-hydroxy-sn-glycero-3-phosphoethanolamine or poly-L-lysine, respectively. These probes were bound to modern silicone hydrogel (SiHG) contact lens, Biofinity from Cooper Vision. Doped lenses were tested for sodium ion dependent spectral properties of probes within the contact lens. The probes displayed changes in intensity and lifetime in response to Na+ concentration, were completely reversible, no significant probe wash-out from the lenses, were not affected by proteins in tears and were not removed after repeated washing. These results are the first step to our long-term goal, which is a lens sensitive to all the electrolytes in tears. We presented design, synthesis and implementation of three new sodium sensitive probes within a silicon hydrogel lens. Contact lenses to measure the other electrolytes in tears can be developed using the same approach by synthesis and testing of new ion-sensitive fluorophores.

8.
J Matern Fetal Neonatal Med ; 34(15): 2513-2521, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31581865

RESUMO

BACKGROUND: Abnormal placentation can result in massive hemorrhage, which is the leading cause of severe maternal morbidities and mortality in its management. Over the past 50 years, the incidence of placenta previa (PP), abnormal implantation of the placenta, and cesarean scar pregnancy have continued to rise. This coincides with the well-documented parallel rise in the rate of cesarean deliveries, the performance of multiple repeat cesarean deliveries and the adoption of newer uterine closure techniques. However, no studies have examined the role of uterine closure techniques in abnormal placentation in women with a history of a prior cesarean delivery. OBJECTIVE: To assess the practicality of one specific uterine closure technique at cesarean delivery and to evaluate the relationship between previous cesarean delivery and subsequent development of abnormal implantation of the placenta, as well as neonatal and other perioperative outcomes after receiving an endometrium-free uterine closure technique. METHODS: This retrospective observational study considered cesarean deliveries (n = 727) and subsequent vaginal births after cesarean delivery (n = 109) among total deliveries (n = 4496) performed in private practice at NYU Langone Health from 1985 to 2015. All cesarean deliveries were performed using the endometrium-free uterine closure technique. The primary outcome was the incidence of abnormal implantation of the placenta in subsequent pregnancies. The secondary outcomes were neonatal and maternal complications, specifically postoperative hemoglobin and hematocrit concentration losses. The association between independent variables and outcomes were evaluated using mixed-effect regression models. RESULTS: In contrast to published data, independent of the number of repeat cesarean deliveries, the presence of 26 (3.1%) PPs and of 366 (43.8%) anterior placentas, there were no patients with abnormal implantation of the placenta in a cesarean scar, neither prenatally nor at delivery. Maternal hemorrhage, postoperative and neonatal complications did not reach clinical significance. The statistical analysis revealed that, when compared with women who had fewer repeat cesarean deliveries using endometrium-free uterine closure technique, those with the most had a lesser risk of forming PP and less blood loss, as measured by both hematocrit and hemoglobin evaluation. CONCLUSION: In this retrospective cohort study, the exclusion of the endometrium during the endometrium-free uterine closure technique was associated with fewer placental abnormalities in subsequent pregnancies and reduced life-threatening maternal morbidity for future cesarean deliveries.


Assuntos
Placenta Acreta , Placenta Prévia , Endométrio , Feminino , Humanos , Recém-Nascido , Placenta , Placenta Acreta/epidemiologia , Placenta Acreta/cirurgia , Placenta Prévia/epidemiologia , Placenta Prévia/cirurgia , Placentação , Gravidez , Estudos Retrospectivos
9.
Cell Death Dis ; 11(10): 859, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060561

RESUMO

During mouse embryonic development, vasculogenesis initially occurs in the yolk sac, preceding neurulation. Our previous studies have demonstrated that maternal diabetes induces embryonic vasculopathy at early embryonic developmental stage by suppressing the expression of vascular growth factors including BMP4 (bone morphogenetic protein 4). This study aimed to determine whether restoring diabetes-inhibited BMP4 expression in Flk-1+ progenitors effectively prevented maternal diabetes-induced embryonic vasculopathy and NTDs. Transgenic (Tg) BMP4 expression in the vascular endothelial growth factor receptor 2 (Flk-1)-positive (Flk-1+) progenitors was achieved by crossing a Floxed BMP4 Tg mouse line with the Flk-1-Cre mouse line. Non-BMP4 Tg and BMP4 Tg embryos were harvested at E8.5 to assess the expression of BMP4, markers of endoplasmic reticulum stress, and expression of the Id genes, direct targets of BMP4; and the presence of cleaved caspase 3 and 8, apoptosis, and Smad signaling. BMP4 Tg overexpression neutralized its down-regulation by maternal diabetes in E8.5 embryos. Maternal diabetes-induced Flk-1+ progenitor apoptosis, impairment of blood island formation, and reduction of Flk-1+ progenitor number and blood vessel density, which were reversed by BMP4 Tg expression. BMP4 Tg expression in Flk-1+ progenitors blocked maternal diabetes-induced vasculopathy in early stage embryos (E7.5-E8.5) and consequently led to amelioration of maternal diabetes-induced neural tube defects (NTDs) at E10.5. BMP4 Tg expression inhibited maternal diabetes-induced endoplasmic reticulum stress and caspase cascade activation in the developing neuroepithelium, and reduced neuroepithelial cell apoptosis. BMP4 Tg expression re-activated Smad1/5/8 phosphorylation and reversed maternal diabetes-suppressed Smad4 expression. BMP4 Tg expression restored Id1 and Smad6 expression inhibited by maternal diabetes. In vitro, recombinant BMP4 protein blocked high glucose-induced Flk-1+ progenitor apoptosis and NTDs. These data demonstrate that BMP4 down-regulation in Flk-1+ progenitors are responsible for diabetes-induced yolk sac vasculopathy, and that restoring BMP4 expression prevents vasculopathy and rescues neuroepithelial cells from cellular organelle stress, leading to NTD reduction.


Assuntos
Proteína Morfogenética Óssea 4/metabolismo , Diabetes Mellitus Experimental/metabolismo , Células Progenitoras Endoteliais/metabolismo , Defeitos do Tubo Neural/metabolismo , Animais , Apoptose/fisiologia , Proteína Morfogenética Óssea 4/biossíntese , Diabetes Mellitus Experimental/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/patologia , Gravidez
10.
Anal Biochem ; 608: 113902, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800702

RESUMO

Rapid and non-invasive measurement of hydration status is medically important because even mild levels of dehydration can have a significant impact on physical and cognitive performance. Despite the potential value of determining whole-body hydration based on the electrolytes found in tears, very few tests are available. An area of intense interest is the development of a contact lens which could measure ion concentrations in tears, specifically that of sodium (Na+) and chloride (Cl-) ions, the dominant electrolytes in blood plasma and tears. Here, we describe a method to make fluorescent contact lenses which allow determination of Na+ and Cl- ion concentrations in tears. Fluorophores known to be sensitive to Na+ and Cl- were derivatized to bind non-covalently to two commercially-available silicone hydrogel (SiHG) contact lenses-the Biofinity (Comfilcon A) or MyDay (Stenfilcon A) lenses. The sodium- and chloride-sensitive fluorophores displayed spectral changes in the physiological range for Na+ and Cl- ions in tears. The lenses for both Na+ and Cl- ions were completely reversible. The sodium responses were not sensitive to protein interference including human lysozyme, human serum albumin and mucin type 2. The chloride sensitivity was similar with both lenses, but the sodium-sensitive range was different in the Biofinity and MyDay lenses. We also fabricated a lens with both the Na+ and Cl- probes in a single MyDay lens resulting in a contact lens that independently measured Na+ and Cl- concentrations without physical separation of the fluorophores. Our findings indicated that a sodium and chloride-sensitive contact lens (NaCl-lens) could be used for rapid non-invasive detection of whole-body hydration, as well as associated diseases or other infections.


Assuntos
Técnicas Biossensoriais/métodos , Cloretos/análise , Corantes Fluorescentes/química , Sódio/análise , Lágrimas/química , Água Corporal/fisiologia , Humanos , Hidrogéis/química , Interações Hidrofóbicas e Hidrofílicas , Íons/análise , Compostos Orgânicos/química , Polilisina/química , Quinolinas/química , Silicones/química , Espectrometria de Fluorescência/métodos , Água/análise
11.
Am J Obstet Gynecol ; 223(5): 753.e1-753.e14, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32416155

RESUMO

BACKGROUND: Autophagy is highly active in neuroepithelial cells of the developing neuroepithelium, and impairment of autophagy leads to neural tube defects. In this study, we have found that maternal diabetes suppresses autophagy that leads to neural tube defects and consequent cellular imbalance in the endoplasmic reticulum where critical events occur, leading to the induction of diabetic embryopathy. Because the mammalian target of rapamycin pathway suppresses autophagy, we hypothesized that 70 kDa ribosomal protein S6 kinase 1 (p70S6K1), a major downstream effector of mammalian target of rapamycin, mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium. OBJECTIVE: We investigated whether p70S6K1 mediates the inhibitory effect of maternal diabetes on autophagy during neurulation. We also examined whether p70S6K1 deficiency restores autophagy and therefore relieves endoplasmic reticulum stress and inhibits maternal diabetes-induced apoptosis, which leads to reduction in neural tube defect incidence in diabetic embryopathy. STUDY DESIGN: Female p70S6K1 heterogeneous knockout (p70S6K1+/-) mice were bred with male p70S6K1 heterogeneous knockout (p70S6K1+/-) mice to generate wild-type (WT), p70S6K1+/- and p70S6K1 knockout (p70S6K1-/-) embryos. Embryos at embryonic day 8.5 were harvested for the assessment of indices of autophagy, endoplasmic reticulum stress, and apoptosis. Neural tube defect incidence in embryos was determined at embryonic day 10.5. For in vitro studies, small interfering RNA knockdown of p70S6K1 in C17.2 mouse neural stem cells was used to determine the effect of p70S6K1 deficiency on autophagy impairment and endoplasmic reticulum stress under high glucose conditions. RESULTS: Knockout of the Rps6kb1 gene, which encodes for p70S6K1, ameliorated maternal diabetes-induced NTDs and restored autophagosome formation in neuroepithelial cells suppressed by maternal diabetes. Maternal diabetes-suppressed conversion of LC3-I (microtubule-associated protein 1A/1B-light chain 3) to LC3-II, an index of autophagic activity, in neurulation stage embryos was abrogated in the absence of p70S6K1. p70S6K1 knockdown in neural stem cells also restored autophagosome formation and the conversion of LC3-I to LC3-II. The activation of the major unfolded protein response, indicated by phosphorylation of inositol-requiring enzyme 1 alpha, and protein kinase R-like endoplasmic reticulum kinase, and eukaryotic translation initiation factor 2α, and the increase of the endoplasmic reticulum stress marker, C/EBP homologous protein, were induced by maternal diabetes in vivo and high glucose in vitro. Unfolded protein response and endoplasmic reticulum stress induced by maternal diabetes or high glucose were reduced by Rps6kb1 deletion or p70S6K1 knockdown, respectively. Rps6kb1 knockout blocked maternal diabetes-induced caspase cleavage and neuroepithelial cell apoptosis. The superoxide dismutase mimetic Tempol abolished high glucose-induced p70S6K1 activation. CONCLUSION: The study revealed the critical involvement of p70S6K1 in the pathogenesis of diabetic embryopathy.


Assuntos
Autofagia/genética , Estresse do Retículo Endoplasmático/genética , Doenças Fetais/genética , Células-Tronco Neurais/metabolismo , Defeitos do Tubo Neural/genética , Gravidez em Diabéticas/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Resposta a Proteínas não Dobradas/genética , Animais , Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/genética , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Glicemia/metabolismo , Óxidos N-Cíclicos/farmacologia , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/metabolismo , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Feminino , Doenças Fetais/etiologia , Doenças Fetais/metabolismo , Glucose/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/metabolismo , Células Neuroepiteliais/efeitos dos fármacos , Células Neuroepiteliais/metabolismo , Neurulação/genética , Estresse Oxidativo , Gravidez , Gravidez em Diabéticas/metabolismo , Marcadores de Spin , Resposta a Proteínas não Dobradas/efeitos dos fármacos
12.
Biochem Biophys Res Commun ; 514(3): 960-966, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31092336

RESUMO

Pregnancies complicated by preexisting maternal diabetes mellitus are associated with a higher risk of birth defects in infants, known as diabetic embryopathy. The common defects seen in the central nervous system result from failure of neural tube closure. The formation of neural tube defects (NTDs) is associated with excessive programmed cell death (apoptosis) in the neuroepithelium under hyperglycemia-induced intracellular stress conditions. The early cellular response to hyperglycemia remains to be identified. We hypothesize that hyperglycemia may disturb intracellular calcium (Ca2+) homeostasis, which perturbs organelle function and apoptotic regulation, resulting in increased apoptosis and embryonic NTDs. In an animal model of diabetic embryopathy, we performed Ca2+ imaging and observed significant increases in intracellular Ca2+ ([Ca2+]i) in the embryonic neural epithelium. Blocking T-type Ca2+ channels with mibefradil, but not L-type with verapamil, significantly blunted the increases in [Ca2+]i, implicating an involvement of channel type-dependent Ca2+ influx in hyperglycemia-perturbed Ca2+ homeostasis. Treatment of diabetic pregnant mice with mibefradil during neurulation significantly reduced NTD rates in the embryos. This effect was associated with decreases in apoptosis, alleviation of endoplasmic reticulum stress, and increases of anti-apoptotic factors. Taken together, our data suggest an important role of Ca2+ influx in hyperglycemia-induced NTDs and of T-type Ca2+ channels as a potential target to prevent birth defects in diabetic pregnancies.


Assuntos
Cálcio/metabolismo , Hiperglicemia/complicações , Defeitos do Tubo Neural/etiologia , Gravidez em Diabéticas/metabolismo , Animais , Apoptose , Modelos Animais de Doenças , Feminino , Doenças Fetais/etiologia , Doenças Fetais/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Defeitos do Tubo Neural/metabolismo , Gravidez
13.
Nat Commun ; 10(1): 282, 2019 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-30655546

RESUMO

Failure of neural tube closure results in severe birth defects and can be induced by high glucose levels resulting from maternal diabetes. MARCKS is required for neural tube closure, but the regulation and of its biological activity and function have remained elusive. Here, we show that high maternal glucose induced MARCKS acetylation at lysine 165 by the acetyltransferase Tip60, which is a prerequisite for its phosphorylation, whereas Sirtuin 2 (SIRT2) deacetylated MARCKS. Phosphorylated MARCKS dissociates from organelles, leading to mitochondrial abnormalities and endoplasmic reticulum stress. Phosphorylation dead MARCKS (PD-MARCKS) reversed maternal diabetes-induced cellular organelle stress, apoptosis and delayed neurogenesis in the neuroepithelium and ameliorated neural tube defects. Restoring SIRT2 expression in the developing neuroepithelium exerted identical effects as those of PD-MARCKS. Our studies reveal a new regulatory mechanism for MARCKS acetylation and phosphorylation that disrupts neurulation under diabetic conditions by diminishing the cellular organelle protective effect of MARCKS.


Assuntos
Diabetes Mellitus Experimental/complicações , Doenças Fetais/patologia , Lisina Acetiltransferase 5/metabolismo , Substrato Quinase C Rico em Alanina Miristoilada/metabolismo , Defeitos do Tubo Neural/patologia , Sirtuína 2/metabolismo , Transativadores/metabolismo , Acetilação , Animais , Glicemia/metabolismo , Linhagem Celular , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/induzido quimicamente , Embrião de Mamíferos , Estresse do Retículo Endoplasmático , Feminino , Doenças Fetais/sangue , Doenças Fetais/etiologia , Humanos , Lisina Acetiltransferase 5/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/patologia , Substrato Quinase C Rico em Alanina Miristoilada/genética , Defeitos do Tubo Neural/etiologia , Neurulação , Fosforilação , Gravidez , Gravidez em Diabéticas/sangue , Sirtuína 2/genética , Estreptozocina/toxicidade , Transativadores/genética
14.
Am J Obstet Gynecol ; 220(1): 108.e1-108.e12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312583

RESUMO

BACKGROUND: Maternal diabetes induces neural tube defects and stimulates the activity of the forkhead box O3 (Fox)O3a in the embryonic neuroepithelium. We previously demonstrated that deleting the FOXO3a gene ameliorates maternal diabetes-induced neural tube defects. Macroautophagy (hereafter referred to as "autophagy") is essential for neurulation. Rescuing autophagy suppressed by maternal diabetes in the developing neuroepithelium inhibits neural tube defect formation in diabetic pregnancy. This evidence suggests a possible link between FoxO3a and impaired autophagy in diabetic embryopathy. OBJECTIVE: We aimed to determine whether maternal diabetes suppresses autophagy through FoxO3a, and if the transcriptional activity of FoxO3a is required for the induction of diabetic embryopathy. STUDY DESIGN: We used a well-established type 1 diabetic embryopathy mouse model, in which diabetes was induced by streptozotocin, for our in vivo studies. To determine if FoxO3a mediates the inhibitory effect of maternal diabetes on autophagy in the developing neuroepithelium, we induced diabetic embryopathy in FOXO3a gene knockout mice and FoxO3a dominant negative transgenic mice. Embryos were harvested at embryonic day 8.5 to determine FoxO3a and autophagy activity and at embryonic day 10.5 for the presence of neural tube defects. We also examined the expression of autophagy-related genes. C17.2 neural stem cells were used for in vitro examination of the potential effects of FoxO3a on autophagy. RESULTS: Deletion of the FOXO3a gene restored the autophagy markers, lipidation of microtubule-associated protein 1A/1B-light chain 3I to light chain 3II, in neurulation stage embryos. Maternal diabetes decreased light chain 3I-positive puncta number in the neuroepithelium, which was restored by deleting FoxO3a. Maternal diabetes also decreased the expression of positive regulators of autophagy (Unc-51 like autophagy activating kinase 1, Coiled-coil myosin-like BCL2-interacting protein, and autophagy-related gene 5) and the negative regulator of autophagy, p62. FOXO3a gene deletion abrogated the dysregulation of autophagy genes. In vitro data showed that the constitutively active form of FoxO3a mimicked high glucose in repressing autophagy. In cells cultured under high-glucose conditions, overexpression of the dominant negative FoxO3a mutant blocked autophagy impairment. Dominant negative FoxO3a overexpression in the developing neuroepithelium restored autophagy and significantly reduced maternal diabetes-induced apoptosis and neural tube defects. CONCLUSION: Our study revealed that diabetes-induced FoxO3a activation inhibited autophagy in the embryonic neuroepithelium. We also observed that FoxO3a transcriptional activity mediated the teratogenic effect of maternal diabetes because dominant negative FoxO3a prevents maternal diabetes-induced autophagy impairment and neural tube defect formation. Our findings suggest that autophagy activators could be therapeutically effective in treating maternal diabetes-induced neural tube defects.


Assuntos
Autofagia/genética , Diabetes Gestacional/genética , Doenças Fetais/genética , Proteína Forkhead Box O3/genética , Regulação da Expressão Gênica no Desenvolvimento , Prenhez , Análise de Variância , Animais , Diabetes Mellitus Experimental , Modelos Animais de Doenças , Feminino , Camundongos , Defeitos do Tubo Neural/diagnóstico por imagem , Defeitos do Tubo Neural/patologia , Gravidez , Reação em Cadeia da Polimerase em Tempo Real/métodos , Sensibilidade e Especificidade , Fatores de Transcrição/genética
15.
Am J Obstet Gynecol ; 219(2): 197.e1-197.e8, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29733843

RESUMO

BACKGROUND: Diabetes mellitus in early pregnancy increases the risk of birth defects in infants. Maternal hyperglycemia stimulates the expression of nitric oxide synthase 2, which can be regulated by transcription factors of the nuclear factor-κB family. Increases in reactive nitrogen species generate intracellular stress conditions, including nitrosative, oxidative, and endoplasmic reticulum stresses, and trigger programmed cell death (or apoptosis) in the neural folds, resulting in neural tube defects in the embryo. Inhibiting nitric oxide synthase 2 can reduce neural tube defects; however, the underlying mechanisms require further delineation. Targeting nitric oxide synthase 2 and associated nitrosative stress using naturally occurring phytochemicals is a potential approach to preventing birth defects in diabetic pregnancies. OBJECTIVE: This study aims to investigate the effect of quercetin-3-glucoside, a naturally occurring polyphenol flavonoid, in reducing maternal diabetes-induced neural tube defects in an animal model, and to delineate the molecular mechanisms underlying quercetin-3-glucoside action in regulating nitric oxide synthase 2 expression. STUDY DESIGN: Female mice (C57BL/6) were induced to develop diabetes using streptozotocin before pregnancy. Diabetic pregnant mice were administered quercetin-3-glucoside (100 mg/kg) daily via gavage feeding, introduction of drug to the stomach directly via a feeding needle, during neurulation from embryonic day 6.5-9.5. After treatment at embryonic day 10.5, embryos were collected and examined for the presence of neural tube defects and apoptosis in the neural tube. Expression of nitric oxide synthase 2 and superoxide dismutase 1 (an antioxidative enzyme) was quantified using Western blot assay. Nitrosative, oxidative, and endoplasmic reticulum stress conditions were assessed using specific biomarkers. Expression and posttranslational modification of factors in the nuclear factor-κB system were investigated. RESULTS: Treatment with quercetin-3-glucoside (suspended in water) significantly decreased neural tube defect rate and apoptosis in the embryos of diabetic mice, compared with those in the water-treated diabetic group (3.1% vs. 24.7%; P < .001). Quercetin-3-glucoside decreased the expression of nitric oxide synthase 2 and nitrosative stress (P < .05). It also increased the levels of superoxide dismutase 1 (P < .05), further increasing the antioxidative capacity of the cells. Quercetin-3-glucoside treatment also alleviated of endoplasmic reticulum stress in the embryos of diabetic mice (P < .05). Quercetin-3-glucoside reduced the levels of p65 (P < .05), a member of the nuclear factor-κB transcription factor family, but augmented the levels of the inhibitor of κBα (P < .05), which suppresses p65 nuclear translocation. In association with these changes, the levels of inhibitor of κB kinase-α and inhibitor of κBα phosphorylation were elevated (P < .05). CONCLUSION: Quercetin-3-glucoside reduces the neural tube defects rate in the embryos of diabetic dams. Quercetin-3-glucoside suppresses nitric oxide synthase 2 and increases superoxide dismutase 1 expression, leading to alleviation of nitrosative, oxidative, and endoplasmic reticulum stress conditions. Quercetin-3-glucoside may regulate the expression of nitric oxide synthase 2 via modulating the nuclear factor-κB transcription regulation system. Quercetin-3-glucoside, a naturally occurring polyphenol that has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies.


Assuntos
Antioxidantes/farmacologia , Diabetes Mellitus Experimental/metabolismo , Embrião de Mamíferos/efeitos dos fármacos , Estresse do Retículo Endoplasmático/efeitos dos fármacos , NF-kappa B/efeitos dos fármacos , Neurulação/efeitos dos fármacos , Estresse Nitrosativo/efeitos dos fármacos , Quercetina/análogos & derivados , Animais , Western Blotting , Feminino , Camundongos , NF-kappa B/genética , NF-kappa B/metabolismo , Defeitos do Tubo Neural/embriologia , Defeitos do Tubo Neural/epidemiologia , Defeitos do Tubo Neural/metabolismo , Óxido Nítrico Sintase Tipo II/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Gravidez em Diabéticas/epidemiologia , Gravidez em Diabéticas/metabolismo , Quercetina/farmacologia , Superóxido Dismutase-1/efeitos dos fármacos , Superóxido Dismutase-1/metabolismo , Fatores de Transcrição/efeitos dos fármacos , Fatores de Transcrição/metabolismo
16.
Anal Biochem ; 542: 84-94, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29183834

RESUMO

Dry eye disease (DED) affects millions of individuals in the United States and worldwide, and the incidence is increasing with an aging population. There is widespread agreement that the measurement of total tear osmolarity is the most reliable test, but this procedure provides only the total ionic strength and does not provide the concentration of each ionic species in tears. Here, we describe an approach to determine the individual ion concentrations in tears using modern silicone hydrogel (SiHG) contact lenses. We made pH (or H3O+, hydronium cation,/OH-, hydroxyl ion) and chloride ion (two of the important electrolytes in tear fluid) sensitive SiHG contact lenses. We attached hydrophobic C18 chains to water-soluble fluorescent probes for pH and chloride. The resulting hydrophobic ion sensitive fluorophores (H-ISF) bind strongly to SiHG lenses and could not be washed out with aqueous solutions. Both H-ISFs provide measurements which are independent of total intensity by use of wavelength-ratiometric measurements for pH or lifetime-based sensing for chloride. Our approach can be extended to fabricate a contact lens which provides measurements of the six dominant ionic species in tears. This capability will be valuable for research into the biochemical processes causing DED, which may improve the ability to diagnose the various types of DED.


Assuntos
Cloretos/análise , Lentes de Contato , Síndromes do Olho Seco/diagnóstico , Hidróxidos/análise , Lágrimas/química , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Concentração de Íons de Hidrogênio , Íons/análise , Silicones/química
17.
Am J Obstet Gynecol ; 218(1): 136.e1-136.e10, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29100869

RESUMO

BACKGROUND: Maternal diabetes induces neural tube defects, and oxidative stress is a causal factor for maternal diabetes-induced neural tube defects. The redox gene nuclear factor erythroid 2-related factor 2 is the master regulator of the cellular antioxidant system. OBJECTIVE: In this study, we aimed to determine whether maternal diabetes inhibits nuclear factor erythroid 2-related factor 2 expression and nuclear factor erythroid 2-related factor 2-controlled antioxidant genes through the redox-sensitive miR-27a. STUDY DESIGN: We used a well-established type 1 diabetic embryopathy mouse model induced by streptozotocin for our in vivo studies. Embryos at embryonic day 8.5 were harvested for analysis of nuclear factor erythroid 2-related factor 2, nuclear factor erythroid 2-related factor 2-controlled antioxidant genes, and miR-27a expression. To determine if mitigating oxidative stress inhibits the increase of miR-27a and the decrease of nuclear factor erythroid 2-related factor 2 expression, we induced diabetic embryopathy in superoxide dismutase 2 (mitochondrial-associated antioxidant gene)-overexpressing mice. This model exhibits reduced mitochondria reactive oxygen species even in the presence of hyperglycemia. To investigate the causal relationship between miR-27a and nuclear factor erythroid 2-related factor 2 in vitro, we examined C17.2 neural stem cells under normal and high-glucose conditions. RESULTS: We observed that the messenger RNA and protein levels of nuclear factor erythroid 2-related factor 2 were significantly decreased in embryos on embryonic day 8.5 from diabetic dams compared to those from nondiabetic dams. High-glucose also significantly decreased nuclear factor erythroid 2-related factor 2 expression in a dose- and time-dependent manner in cultured neural stem cells. Our data revealed that miR-27a was up-regulated in embryos on embryonic day 8.5 exposed to diabetes, and that high glucose increased miR-27a levels in a dose- and time-dependent manner in cultured neural stem cells. In addition, we found that a miR-27a inhibitor abrogated the inhibitory effect of high glucose on nuclear factor erythroid 2-related factor 2 expression, and a miR-27a mimic suppressed nuclear factor erythroid 2-related factor 2 expression in cultured neural stem cells. Furthermore, our data indicated that the nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1 were down-regulated by maternal diabetes in embryos on embryonic day 8.5 and high glucose in cultured neural stem cells. Inhibiting miR-27a restored expression of glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione S-transferase A1. Overexpressing superoxide dismutase 2 reversed the maternal diabetes-induced increase of miR-27a and suppression of nuclear factor erythroid 2-related factor 2 and nuclear factor erythroid 2-related factor 2-controlled antioxidant enzymes. CONCLUSION: Our study demonstrates that maternal diabetes-induced oxidative stress increases miR-27a, which, in turn, suppresses nuclear factor erythroid 2-related factor 2 and its responsive antioxidant enzymes, resulting in diabetic embryopathy.


Assuntos
MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Gravidez em Diabéticas/metabolismo , Animais , Células Cultivadas , Feminino , MicroRNAs/genética , Mitocôndrias/genética , Modelos Animais , Fator 2 Relacionado a NF-E2/genética , Células-Tronco Neurais/metabolismo , Defeitos do Tubo Neural/metabolismo , Gravidez , Superóxido Dismutase/genética , Regulação para Cima
18.
Sci Rep ; 7(1): 11107, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28894244

RESUMO

Diabetes mellitus in early pregnancy can cause neural tube defects (NTDs) in embryos by perturbing protein activity, causing cellular stress, and increasing programmed cell death (apoptosis) in the tissues required for neurulation. Hyperglycemia augments a branch pathway in glycolysis, the hexosamine biosynthetic pathway (HBP), to increase uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlcNAc can be added to proteins by O-GlcNAc transferase (OGT) to regulate protein activity. In the embryos of diabetic mice, OGT is highly activated in association with increases in global protein O-GlcNAcylation. In neural stem cells in vitro, high glucose elevates O-GlcNAcylation and reactive oxygen species, but the elevations can be suppressed by an OGT inhibitor. Inhibition of OGT in diabetic pregnant mice in vivo decreases NTD rate in the embryos. This effect is associated with reduction in global O-GlcNAcylation, alleviation of intracellular stress, and decreases in apoptosis in the embryos. These suggest that OGT plays an important role in diabetic embryopathy via increasing protein O-GlcNAcylation, and that inhibiting OGT could be a candidate approach to prevent birth defects in diabetic pregnancies.


Assuntos
Acetilglucosamina/metabolismo , Complicações do Diabetes , Exposição Materna , Defeitos do Tubo Neural/etiologia , Defeitos do Tubo Neural/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Apoptose , Glicemia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático , Ativação Enzimática , Feminino , Glucose/metabolismo , Glicosilação , Redes e Vias Metabólicas , Camundongos , N-Acetilglucosaminiltransferases/metabolismo , Defeitos do Tubo Neural/patologia , Gravidez , Espécies Reativas de Oxigênio/metabolismo
19.
Nat Commun ; 8: 15182, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28474670

RESUMO

Gene deletion-induced autophagy deficiency leads to neural tube defects (NTDs), similar to those in diabetic pregnancy. Here we report the key autophagy regulators modulated by diabetes in the murine developing neuroepithelium. Diabetes predominantly leads to exencephaly, induces neuroepithelial cell apoptosis and suppresses autophagy in the forebrain and midbrain of NTD embryos. Deleting the Prkca gene, which encodes PKCα, reverses diabetes-induced autophagy impairment, cellular organelle stress and apoptosis, leading to an NTD reduction. PKCα increases the expression of miR-129-2, which is a negative regulator of autophagy. miR-129-2 represses autophagy by directly targeting PGC-1α, a positive regulator for mitochondrial function, which is disturbed by maternal diabetes. PGC-1α supports neurulation by stimulating autophagy in neuroepithelial cells. These findings identify two negative autophagy regulators, PKCα and miR-129-2, which mediate the teratogenicity of hyperglycaemia leading to NTDs. We also reveal a function for PGC-1α in embryonic development through promoting autophagy and ameliorating hyperglycaemia-induced NTDs.


Assuntos
Autofagia/genética , Sistema Nervoso Central/embriologia , MicroRNAs/genética , Defeitos do Tubo Neural/genética , Gravidez em Diabéticas , Proteína Quinase C-alfa/genética , Animais , Linhagem Celular , Diabetes Mellitus Experimental , Feminino , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , Tubo Neural/anormalidades , Células Neuroepiteliais/citologia , Neurulação/genética , Estresse Oxidativo/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Gravidez , Estreptozocina
20.
Am J Obstet Gynecol ; 217(2): 216.e1-216.e13, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28412087

RESUMO

BACKGROUND: Cardiac hypertrophy is highly prevalent in patients with type 2 diabetes mellitus. Experimental evidence has implied that pregnant women with type 2 diabetes mellitus and their children are at an increased risk of cardiovascular diseases. Our previous mouse model study revealed that maternal type 2 diabetes mellitus induces structural heart defects in their offspring. OBJECTIVE: This study aims to determine whether maternal type 2 diabetes mellitus induces embryonic heart hypertrophy in a murine model of diabetic embryopathy. STUDY DESIGN: The type 2 diabetes mellitus embryopathy model was established by feeding 4-week-old female C57BL/6J mice with a high-fat diet for 15 weeks. Cardiac hypertrophy in embryos at embryonic day 17.5 was characterized by measuring heart size and thickness of the right and left ventricle walls and the interventricular septum, as well as the expression of ß-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, desmin, and adrenomedullin. Cardiac remodeling was determined by collagen synthesis and fibronectin synthesis. Fibrosis was evaluated by Masson staining and determining the expression of connective tissue growth factor, osteopontin, and galectin-3 genes. Cell apoptosis also was measured in the developing heart. RESULTS: The thicknesses of the left ventricle walls and the interventricular septum of embryonic hearts exposed to maternal diabetes were significantly thicker than those in the nondiabetic group. Maternal diabetes significantly increased ß-myosin heavy chain, atrial natriuretic peptide, insulin-like growth factor-1, and desmin expression, but decreased expression of adrenomedullin. Moreover, collagen synthesis was significantly elevated, whereas fibronectin synthesis was suppressed, in embryonic hearts from diabetic dams, suggesting that cardiac remodeling is a contributing factor to cardiac hypertrophy. The cardiac fibrosis marker, galectin-3, was induced by maternal diabetes. Furthermore, maternal type 2 diabetes mellitus activated the proapoptotic c-Jun-N-terminal kinase 1/2 stress signaling and triggered cell apoptosis by increasing the number of terminal deoxynucleotidyl transferase 2'-deoxyuridine 5'-triphosphate nick end labeling-positive cells (10.4 ± 2.2% of the type 2 diabetes mellitus group vs 3.8 ± 0.7% of the nondiabetic group, P < .05). CONCLUSION: Maternal type 2 diabetes mellitus induces cardiac hypertrophy in embryonic hearts. Adverse cardiac remodeling, including elevated collagen synthesis, suppressed fibronectin synthesis, profibrosis, and apoptosis, is implicated as the etiology of cardiac hypertrophy.


Assuntos
Cardiomegalia/embriologia , Cardiomegalia/etiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Gestacional , Miocárdio/patologia , Animais , Feminino , Fibrose/embriologia , Fibrose/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...